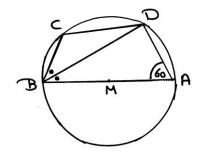
Final revision

[1] In the opposite figure

ABCD is a cyclic quadrilateral in which : \overline{AB} is a diameter and \overline{BD} bisects $\angle ABC$ If $m(\angle A) = 60^{\circ}$

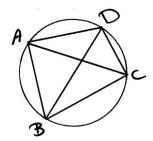
Find with proof : $m(\angle CDB)$



[2] In the opposite figure

ABCD is a cyclic quadrilateral such that : AC = BD

Proof that : AB = CD

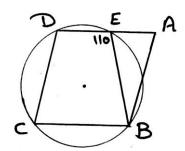


[3] In the opposite figure

ABCD is a parallelogram $E \in \overline{AD}$, m($\angle BED$) = 110°

(i) **Proof that** : AB = EB

(ii) Find: $m(\angle ABE)$, m(EBC)



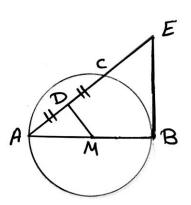
[4] In the opposite figure

 \overrightarrow{AB} is a diameter in the circle M. \overrightarrow{BE} is a tangent to the circle at B

D is the midpoint of \overline{AC}

Proof that: (i) MBED is a cyclic quad.

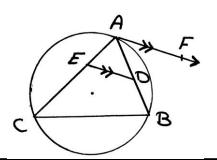
(ii) \overline{MD} // \overline{BC}



[5] In the opposite figure

 \overrightarrow{FA} is a tangent to the circle at A, \overrightarrow{DE} // \overrightarrow{FA}

Proof that: DBCE is a cyclic quad.



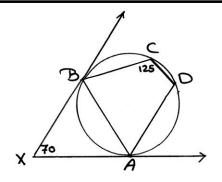
[6] In the opposite figure

 \overrightarrow{XA} and \overrightarrow{XB} are two tangents to the circle at A and B

$$m(\angle AXB) = 70^{\circ}, m(\angle DCB) = 125^{\circ}$$

Proof that : (i) \overrightarrow{AB} bisects $\angle DAX$

(ii)
$$\overrightarrow{AD}$$
 // $\overrightarrow{\overline{XB}}$

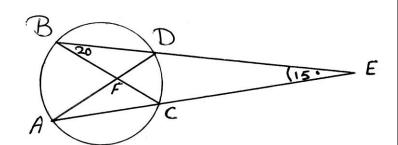


[7] In the opposite figure

$$m(\angle DBC) = 20^{\circ}$$

$$m(\angle E) = 15^{\circ}$$

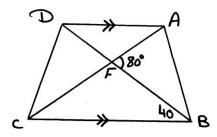
Find: $m(\angle AFB)$



[8] In the opposite figure

$$m(\angle AFB) = 80^{\circ}$$
, $m(\angle DBC) = 40^{\circ}$, \overline{AD} // \overline{BC}

Proof that: ABCD is a cyclic quad.



[9] In the opposite figure

AC is a diameter in the circle M.

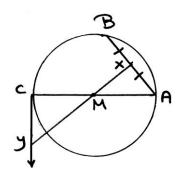
X is the midpoint of \overline{AB}

 \overrightarrow{CY} is a tangent to the circle at C

and cuts \overrightarrow{XM} at Y

Proof that: (i) AXCY is a cyclic quad.

(ii) $m(\angle BMC) = 2m(\angle MYC)$



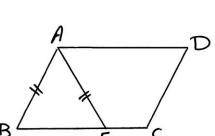
[10] In the opposite figure

ABCD is a parallelogram

 $E \in \overline{BC}$ such that : AB = AE

Proof that: (i) AECD is a cyclic quad.

(ii) \overrightarrow{AD} is a tangent to the circumcircle of \triangle ABE



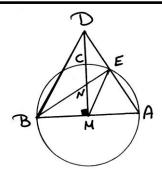
[11] In the opposite figure

 \overline{AB} is a diameter in the circle M.

$$\overline{MX} \perp \overline{AB}$$
, $\overline{BE} \cap \overrightarrow{MC} = \{N\}$

Proof that: (i) DEMB is a cyclic quad.

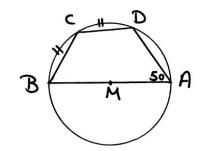
(ii) \overrightarrow{EM} is a tangent to the circumcircle of \triangle NDE



[12] In the opposite figure

 \overline{AB} is a diameter in the circle M. $m(\angle A) = 50^{\circ}$, m(BC) = m(CD)

Find: $m(\angle CDA)$

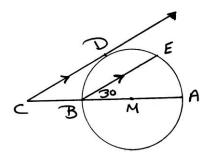


[13] In the opposite figure

 \overrightarrow{CD} is a tangent to the circle M , \overrightarrow{CD} // \overline{BE}

If $m(\angle ABE) = 30^{\circ}$

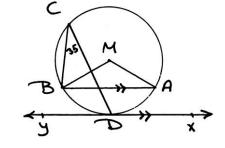
Find: $m(\angle AME)$, m(BD)



[14] In the opposite figure

 \overleftrightarrow{XY} touches the circle M at D , \overleftrightarrow{XY} // \overrightarrow{AB}

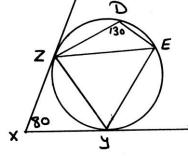
If $m(\angle BCD) = 35^{\circ}$ **Find**: $m(\angle ABM)$



[15] In the opposite figure

 \overrightarrow{XY} and \overrightarrow{XZ} are two tangents to the circle at Y and Z If m(\angle YXZ) = 80°, m(\angle EDZ) = 130°

Proof that : (i) $\overline{ZE} = \overline{ZY}$ (ii) $\overline{XZ} / \overline{YE}$

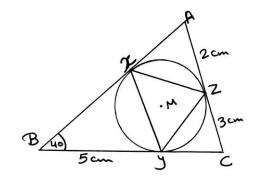


[16] In the opposite figure

M is a circle touching the sides of the triangle ABC at X, Y and Z If AX = 2cm., YB = 5cm.,

 $CZ = 3 \text{ cm. m}(\angle B) = 40^{\circ}$

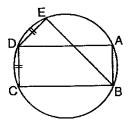
Find: (i) the perimeter of $\triangle ABC$ $(ii)m(\angle XZY)$



[17] In the opposite figure

ABCD is a rectangle inscribed in a circle and DE = DC

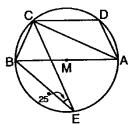
Prove that : AD = BE



[18] In the opposite figure

AB is a diameter and $m(\angle BEC) = 25^{\circ}$

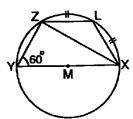
Find: $m(\angle BAC)$, $m(\angle ABC)$ and $m(\angle ADC)$



[19] In the opposite figure

 \overline{XY} is a diameter in circle M, m(xL) = m(LZ) and $m(\angle Y) = 60^{\circ}$

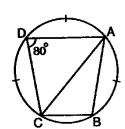
Find: $m(\angle L)$, $m(\angle XZY)$ and $m(\angle LXZ)$



[20] In the opposite figure

The length of AB =the length of AD= the length of DCand $m(\angle ADC) = 80^{\circ}$

Find: $m(\angle ACB)$ and m(BC)



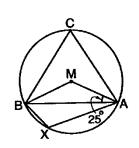
[21] In the opposite figure

ABC is a triangle inscribed in a circle M and $m(\angle MAB) = 25^{\circ}$

Find : (1)m(\angle AMB) $(2) m(\angle ACB)$

(3)m $(\angle AXB)$

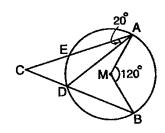
(4) m(AB)



[22] In the opposite figure

$$\overrightarrow{BD} \cap \overrightarrow{AE} = \{C\}$$
, m(\angle AMB) = 120° and m(\angle DAC) = 20°

Find: $m(\angle C)$

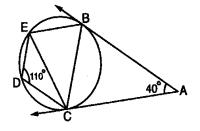


[23] In the opposite figure

 \overrightarrow{AB} and \overrightarrow{AC} are two tangents to a circle at B and C, m(\angle BAC) = 40° and m(\angle CDE) = 110°

Prove that : (i) CB = CE

(ii) $\overline{\text{BE}}$ // \overline{AC}

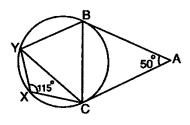


[24] In the opposite figure

 \overline{AB} and \overline{AC} are two tangents to a circle at B and C , m($\angle A$) = 50° and m($\angle CXY$) = 115°

Prove that : (i) \overrightarrow{BC} bisects $\angle ABY$

(ii) CB = CY



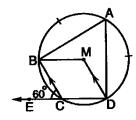
[25] In the opposite figure

 $m(\angle BCE) = 60^{\circ}, \overline{BC} // \overline{MD}$

and A is the midpoint of BD the major

Prove that: (i) BMDC is a rhombus.

(ii) \overline{AC} is a diameter of the circle.



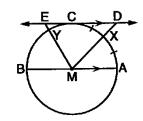
[26] In the opposite figure

 \overline{AB} is a diameter in the circle M.

 \overrightarrow{DE} is a tangent to it at C, \overrightarrow{AB} // \overrightarrow{DE}

, X is the midpoint of AC and

m(BY) = 2m(CY)



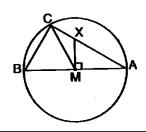
Find: The measures of the angles of the triangle MDE

[27] In the opposite figure

 \overline{AB} is a diameter in the circle M.

 $\overline{MX} \perp \overline{AB}$

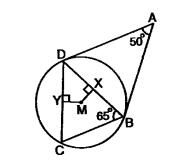
Prove that : $m(\angle AXM) = \frac{1}{2}m(\angle AMC)$



[28] In the opposite figure

AB and AC are two tangents to a circle M at B and D, $\overline{MX} \perp \overline{BD}$, $\overline{MY} \perp \overline{CD}$ $m(\angle A) = 50^{\circ}$, $m(\angle DBC) = 65^{\circ}$

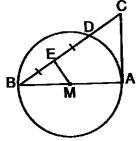
Prove that : MX = MY



[29] In the opposite figure

AB is a diameter of the circle M \overrightarrow{AC} is a tangent to it at A and E is the midpoint of \overline{BD}

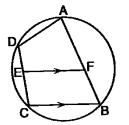
Prove that : (i) ACEM is a cyclic quad. (ii) \overline{ME} // \overline{AD}



[30] In the opposite figure

ABCD is a cyclic quad. and \overrightarrow{FE} // \overrightarrow{BC}

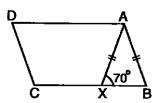
Prove that : AFED is a cyclic quad.



[31] In the opposite figure

ABCD is a parallelogram, AB = AXand $m(\angle AXB) = 70^{\circ}$

Prove that : AXCD is a cyclic quad.

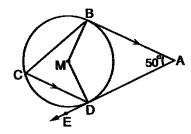


[32] In the opposite figure

 \overline{AB} and \overline{AC} are two tangents to a circle M at B and D, m($\angle A$) = 50° and \overline{AB} // \overline{DC}

(i) **Prove that**: ABMD is a cyclic quad.

(ii)**Find** : $m(\angle ABC)$

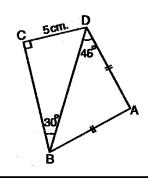


[33] In the opposite figure

AB = AD, $m(\angle ADB) = 45^{\circ}$, $m(\angle C) = 90^{\circ}$ $m(\angle CBD) = 30^{\circ} \text{ and } DC = 5 \text{ cm}.$

(i) **Prove that** : ABCD is a cyclic quad.

(ii) **Clculate** the radius length of the circle passing through the vertices of the figure ABCD



[34] In the opposite figure

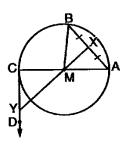
AB is a diameter of the circle M

 \overrightarrow{CD} is a tangent to it

and X is the midpoint of \overline{AB}

Prove that : (i) AXCY is a cyclic quad.

(ii) $m(\angle BMC) = 2 m(\angle MYC)$



[35] In the opposite figure

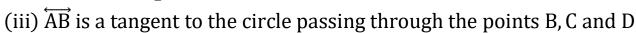
AB is a diameter of the circle M

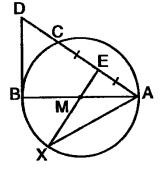
, \overrightarrow{BD} is a tangent to it at B and E is the midpoint of \overline{AC}

Prove that:

(i) MEDB is a cyclic quad.

(ii)
$$m(\angle BAX) = \frac{1}{2}m(\angle D)$$





[36] In the opposite figure

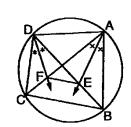
ABCD is a cyclic quad.

, AE bisects ∠BAC

and \overrightarrow{DF} bisects $\angle BDC$

Prove that: (i) AEFD is a cyclic quad.

(ii) \overline{EF} // \overline{BC}

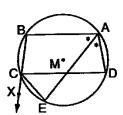


[37] In the opposite figure

ABCD is a cyclic quad.

and \overrightarrow{AE} bisects $\angle A$

Prove that : \overrightarrow{CE} bisects $\angle XCD$

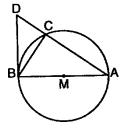


[38] In the opposite figure

AB is a diameter of the circle M

, \overrightarrow{BD} is a tangent to it at B

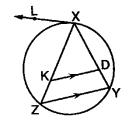
Prove that : \overrightarrow{AB} is a tangent to the circle passing through the vertices of ΔBCD



[39] In the opposite figure

 \overrightarrow{XY} is a tangent to the circle at X \overline{DK} // \overline{YZ}

Prove that : \overrightarrow{XL} is a tangent to the circle passing through the vertices of ΔXDK

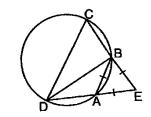


[40] In the opposite figure

ABCD is a cyclic quad.

, BE = EA = AB and (BC) = 60°

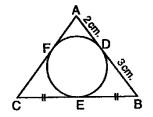
Prove that : \overline{CD} is a diameter of the circle



[41] In the opposite figure

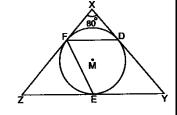
AD = 2cm. , DB = 3 cm. and E is the mid point of \overline{BC}

Calculate: The perimeter of \triangle ABC



[42] In the opposite figure

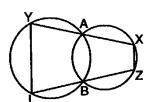
XYZ is a triangle in which: $m(\angle YXZ) = 80^{\circ}$, The circle M touches its sides \overline{XY} , \overline{YZ} and \overline{ZX} at the points D, E and F respectivelyIf XY = XZ **Find**: $m(\angle DFE)$



[43] In the opposite figure

Two circles intersect at A and B

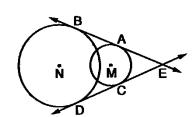
Prove that : \overline{XZ} // \overline{YL}



[44] In the opposite figure

 \overrightarrow{AB} and \overrightarrow{CD} are two tangents to the two circles M and N $\overrightarrow{AB} \cap \overrightarrow{CD} = \{E\}$

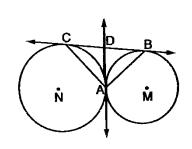
Prove that : AB = CD



[45] In the opposite figure

M and N are two touching externally circles at A, \overrightarrow{BC} is a common tangent to the two circles at B and C and \overrightarrow{AD} is a common tangent to them at A

Prove that : $m(\angle BAC) = 90^{\circ}$



Model answer

[1]: \overline{AB} is a diameter

$$\therefore m(\angle ADB) = 90^{\circ}$$

[inscribed angle drawn in a semi circle]

 $In \Delta ABD$

$$m (\angle ABD) = 180^{\circ} - (90^{\circ} + 60^{\circ}) = 30^{\circ}$$

 $\therefore \overrightarrow{BD}$ bisects $\angle ABC$

$$\therefore m (\angle CBD) = m (\angle DBA) = 30^{\circ}$$

∵ ABCD is a cyclic quad.

$$\therefore m (\angle A) + m (\angle C) = 180^{\circ}$$

[two opposite angles]

$$m (\angle C) = 180^{\circ} - 60^{\circ} = 120^{\circ}$$

 $In \Delta BCD$

$$m (\angle CDB) = 180^{\circ} - (30^{\circ} + 120^{\circ}) = 30^{\circ}$$

[2]

$$: AC = BD$$

$$AC = BD$$

by subtracting m(BC) from both terms

$$\therefore m(AB) = m(CD)$$

$$AB = CD$$

[3]

 \therefore BCDE is a cyclic quad.

$$\therefore m (\angle C) + m (\angle BED) = 180^{\circ}$$

[two opposite angles]

$$m(\angle C) = 180^{\circ} - 110^{\circ} = 70^{\circ}$$

∵ ABCD is a parallelogram

$$\therefore m(\angle A) = m(\angle C) = 70^{\circ}$$

[two opposite angles]

$$m (\angle AED) = 180^{\circ} (st.angle)$$

$$\therefore m (\angle AEB) = 180^{\circ} - 110^{\circ} = 70^{\circ}$$

In $\triangle ABE$

$$m (\angle BAE) = m (\angle BEA) = 70^{\circ}$$

 $\therefore \Delta ABE$ is an isos. triangle

$$\therefore m (\angle ABE) = 180^{\circ} - (70^{\circ} + 70^{\circ}) = 40^{\circ}$$

∵ ABCD is a parallelogram

$$\therefore m(\angle A) + m(\angle D) = 180^{\circ}$$

[two consecutive angles]

$$m (\angle D) = 180^{\circ} - 70^{\circ} = 110^{\circ}$$

$$\therefore m(EBC) = 2m(\angle D) = 2 \times 110^{\circ} = 220^{\circ} \quad [inscribed angle and opposite arc]$$

[4]

Const.: Draw \overline{BC}

- $\therefore \overrightarrow{BE}$ is a tangent to the circle at B
- $\therefore \overline{EB} \perp \overline{AB}$
- $\therefore m (\angle EBA) = 90^{\circ}$
- : D is a midpoint of \overline{AC}
- $\therefore \overline{MD} \perp \overline{AC}$
- $\therefore m (\angle MDE) = 90^{\circ}$

```
\because m (\angle EBA) + m (\angle MDE) = 90^{\circ} + 90^{\circ} = 180^{\circ}
∴ MBED is a cyclic quad.
m (\angle ACB) = 90^{\circ}
                                                           [inscribed angle drawn in a semi circle]
m (\angle ACB) = m (\angle ADM) = 90^{\circ}
                                                           [and they are in position of corresponding angles]
\therefore \overline{MD} // \overline{BC}
[5]
\therefore \overrightarrow{FA} is a tangent to the circle
                                                         angle of tangecy and inscribed angle subtended by AB
\therefore m(\angle FAB) = m(\angle ACB) \rightarrow (1)
: \overline{DE} // \overline{FA}
\therefore m(\angle FAB) = m(\angle ADE) \rightarrow (2)
                                                        [alt. angles]
From (1) and (2)
\therefore m(\angle ACB) = m(\angle ADE)
                                                        [Exterior angle and interior angle at opposite vertex]
∴ DBCE is a cyclic quad.
[6]
\therefore \overrightarrow{XA} and \overrightarrow{XB} iare two tangents drawn from X
\therefore XA = XB
In ΔXAB
: XA = XB (proved)
\therefore m (\angle XAB) = m (\angle XBA) = \frac{180^{\circ} - 70^{\circ}}{2} = 55^{\circ} \rightarrow (1)
∵ ABCD is a cyclic quad.
\therefore m(\angle A) + m(\angle C) = 180^{\circ}
                                                                                    [two opposite angles]
\therefore m (\angle BAD) = 180^{\circ} - 125^{\circ} = 55^{\circ}
                                                                  \rightarrow (2)
From (1) and (2)
\therefore m (\angle XAB) = m (\angle BAD) = 55^{\circ}
\therefore \overrightarrow{AB} \text{ bisects } \angle DAX
m (\angle DAX) + m (\angle X) = 110^{\circ} + 70^{\circ} = 180^{\circ}
                                                                       [and they are in position of interior supp. angles]
\therefore \overline{AD} // \overline{XB}
[7]
m (\angle CBD) + m (\angle CAD) = 20^{\circ}
                                                                 two inscribed angles subtended by the same arc CD
∴ In ∆ADE
m (\angle ADE) = 180^{\circ} - [15^{\circ} + 20^{\circ}] = 145^{\circ}
m (\angle BDE) = 180^{\circ} (st.angle)
\therefore m (\angle ADB) = 180^{\circ} - 145^{\circ} = 35^{\circ}
\therefore \angle AFB is an exterior angle to \triangle BDF
\therefore m (\angle AFB) = m (\angle FDB) + m (\angle FBD) = 35^{\circ} + 20^{\circ} = 55^{\circ}
[8]
: \overline{AD} // \overline{BC}
\therefore m(\angle ADB) = m(\angle DBC) = 40^{\circ}
                                                                    [alt. angles]
\therefore \angle AFB is an exterior angle to \triangle AFD
\therefore m (\angle DAC) = 80^{\circ} + 40^{\circ} = 40^{\circ}
m(\angle DAC) + m(\angle DBC) = 40^{\circ} [and they drawn on the same base \overline{CD} and in the same side of it]
∴ ABCD is a cyclic quad.
[9]
\therefore \overline{AC} is a diameter and \overline{CY} is a tangent to the circle
\vec{CY} \perp \overline{AC}
```

```
\therefore m (\angle ACY) = 90^{\circ}
\therefore X is a midpoint of \overline{AB}
\therefore \overline{MX} \perp \overline{AB}
\therefore m (\angle AXY) = 90^{\circ}
m(\angle ACY) = m(\angle AXY) = 90^{\circ} [and they drawn on the same base \overline{AY} and in the same side of it]
\therefore AXCY is a cyclic quad.
                                                             [drawn on the same base \overline{XC} and in the same side of it]
\therefore m(\angle MYC) = m(\angle BAC)
                                              \rightarrow (1)
                                             \rightarrow (2)
                                                             Central and inscribed angles sub. by BC
\therefore m (\angle BMC) = 2m (\angle BAC)
From (1) and (2)
\therefore m (\angle BMC) = 2m (\angle MYC)
[10]
∵ ABCD is a parallelogram
\therefore m(\angle B) = m(\angle D) \longrightarrow (1)
In ΔABE
: AB = AE
\therefore m(\angle B) = m(\angle AEB) \rightarrow (2)
From (1) and (2)
\therefore m(\angle AEB) = m(\angle D)
                                                              [Exterior angle and interior angle at opposite vertex]
\therefore AECD is a cyclic quad.
∵ ABCD is a parallelogram
\therefore AD //BC
\therefore m(\angle DAE) = m(\angle AEB) \rightarrow (3) \qquad [alt. angles]
From (2) and (3)
\therefore m(\angle DAE) = m(\angle B)
\therefore \overline{AD} is a tangent to the circumcircle of \triangle ABE
[11]
: \overline{MC} \perp \overline{AB}
\therefore m (\angle DMB) = 90^{\circ}
                                 \rightarrow (1)
\therefore \overline{AB} is a diameter
\therefore m (\angle AEB) = 90^{\circ}
                                                            [inscribed angle drawn in a semi circle]
m (\angle DEB) = 180^{\circ} - 90^{\circ} = 90^{\circ} \rightarrow (2)
                                                            [st.angle]
From (1) and (2)
\therefore m (\angle DMB) = m (\angle AEB) = 90^{\circ} [and they drawn on the same base \overline{BD} and in the same side of it]
\therefore DEMB is a cyclic quad.
                                                            [drawn on the same base \overline{ME} and in the same side of it]
\therefore m (\angle EBM) = m (\angle EDM) \rightarrow (3)
In \Delta MEB
: MB = ME \ (2 \ radii)
\therefore m (\angle EBM) = m (\angle MEB) \rightarrow (4)
From (3) and (4)
\therefore m (\angle MEB) = m (\angle EDM)
\therefore \overline{EM} is a tangent to the circumcircle of \Delta NDE
Const.: Draw \overline{BD}
\because \overline{BD} is a diameter
\therefore m (\angle ADB) = 90^{\circ}
∵ ABCD is a cyclic quad.
\therefore m (\angle BCD) + m (\angle A) = 180^{\circ}
                                                 [two opposite angles]
```

$$\therefore m (\angle BCD) = 180^{\circ} - 50^{\circ} = 130^{\circ}$$

$$: m(BC) = m(CD)$$

$$BC = CD$$

In \(\Delta BCD \)

: BC = CD(proved)

$$\therefore m (\angle CDB) = m (\angle CBD) = \frac{180^{\circ} - 130^{\circ}}{2} = 25^{\circ} \rightarrow (2)$$

From (1) *and* (2)

$$\therefore m (\angle CDA) = 90^{\circ} + 25^{\circ} = 115^{\circ}$$

[13]

 $: m (\angle ABE) = 30^{\circ}$

$$\because m(AE) = 2 \times 30^{\circ} = 60^{\circ}$$

[opposite arc]

 $\therefore \overline{BD}$ is a diameter

$$\therefore m \left(AEB\right) = 180^{\circ}$$

[semi circle]

$$\therefore m \left(EDB \right) = 180^{\circ} - 60^{\circ} = 120^{\circ}$$

 $\because \overline{CD}$ is a tangent and $\overline{CD}//\overline{BE}$

$$\therefore m(BD) = m(DE) = \frac{1}{2}m(BE) = 120^{\circ} \div 2 = 60^{\circ}$$

[14]

$$m (\angle BCD) = 35^{\circ}$$

$$: m(BD) = 2 \times 35^{\circ} = 70^{\circ} [opposite arc]$$

 $\therefore \overline{XY}$ is a tangent and $\overrightarrow{AB}//\overline{XY}$

$$\therefore m(AD) = m(BD) = 70^{\circ}$$

$$\therefore m(ADB) = 2 \times 70^{\circ} = 140^{\circ}$$

 \therefore $\angle AMB$ is a central angle subtended by ADB

$$\therefore m (\angle AMB) = 140^{\circ}$$

In Δ*AMB*

$$: AM = BM \ (2 \ radii)$$

$$\therefore m \left(\angle ABM \right) = m \left(\angle BAM \right) = \frac{180^{\circ} - 140^{\circ}}{2} = 20^{\circ}$$

[15]

 $\therefore \overrightarrow{XZ}$ and \overrightarrow{XY} are two tangents drawn from X

$$\therefore XZ = XY$$

In ΔXYZ

$$: XY = XZ$$
 (proved)

$$\therefore m (\angle XZY) = m (\angle XYZ) = \frac{180^{\circ} - 80^{\circ}}{2} = 50^{\circ}$$

 $: m(\angle ZEY) = m(\angle XYZ) = 50^{\circ} \rightarrow (1)$

angle of tangecy and inscribed angle subtended by ZY

: EDZY is a cyclic quad.

$$\therefore m(\angle Y) + m(\angle D) = 180^{\circ}$$

[two opposite angles]

$$\therefore m (\angle EYZ) = 180^{\circ} - 130^{\circ} = 50^{\circ} \rightarrow (2)$$

From (1) and (2)

 $\because \overline{AZ}$, \overline{AX} are two tangent — segment to the circle

$$\therefore$$
 AZ = AX = 2 cm.

 $\because \overline{BY}$, \overline{BX} are two tangent – segment to the circle

$$\therefore$$
 BY = BX = 5 cm.

 $\because \overline{CY}$, \overline{CZ} are two tangent – segment to the circle

$$\therefore$$
 CY = CZ = 3 cm.

∴ The per. of $\triangle ABC = 2 + 3 + 3 + 5 + 5 + 2$ = 20 cm.

Const : Draw \overline{MX} and \overline{MY}

 $\because \overline{MX}$ is a radius, \overline{BX} is a tangent – segment to the circle at X

$$\therefore \overline{MX} \perp \overline{BX}$$

$$\therefore$$
 m(\angle BXM) = 90°

similarly \therefore m(\angle BYM) = 90°

 $m(\angle BXM) + m(\angle BYM) = 90^{\circ} + 90^{\circ} = 180^{\circ}$

∴ BXMY is a cyclic quad.

 $m(\angle XMY) + m(\angle XBY)$

$$\therefore m(\angle XMY) = 180^{\circ} - 40^{\circ} = 140^{\circ}$$

 $\therefore m(\angle XZY) = \frac{1}{2}m(\angle XMY) = \frac{1}{2} \times 140^{\circ} = 70^{\circ}$

[inscribed angle and central angle subtended by xy]

```
In ΔEYZ
\therefore m(\angle EYZ) + m(\angle ZEY)
\therefore ZE = ZY
m (\angle ZXY) + m (\angle XYE) = 80 + 50 + 50 = 180^{\circ} [and they are in position of interior supp. angles]
\therefore \overline{YE} // \overline{XZ}
[17]
∴ ABCD is a rectangle
\therefore AB = DC
                         (two opposite sides)
: DE = DC
                         (given)
\therefore DE = AB
\therefore m(DE) = m(AB)
By adding m(AE) for both terms
\therefore m(AD) = m(BE)
\therefore AD = BE
[18]
                                               two inscribed angles sub. by the same arc BC
: m (\angle BAC) = m (\angle BEC)
\therefore m (\angleBAC) = 25°
\therefore \overline{AB} is a diameter
\therefore m(\angleACB) = 90°
                                                [inscribed angle drawn in a semi circle]
In AABC
m (\angle ABC) = 180^{\circ} - (90^{\circ} + 25^{\circ}) = 65^{\circ}
∴ ABCD is a cyclic quad.
\therefore m (\angleABC) + m (\angleADC) = 180° [two opposite angles]
\therefore m (\angleADC) = 180° - 65° = 115°
[19]
∴ XYZL is a cyclic quad.
\therefore m (\angle L) + m(\angle Y) = 180^{\circ}
                                                [two opposite angles]
m(\angle L) = 180^{\circ} - 60^{\circ} = 120^{\circ}
\therefore \overline{XY} is a diameter
\therefore m(\angle XZY) = 90°
In DXYZ
m(\angle ZXY) = 180^{\circ} - (90^{\circ} + 60^{\circ}) = 30^{\circ}
In ALXZ
\therefore LX = LZ
\therefore m(\angle LXZ) = m(\angle LZX) = \frac{180^{\circ} - 120^{\circ}}{2} = 30^{\circ}
[20]
\therefore length of AB = length of AD = length of CD
\therefore AB = AD = CD
In AACD
: AD = CD
\therefore m(\angle ACD) = m(\angle CAD) = \frac{180^{\circ} - 80^{\circ}}{2} = 50^{\circ}
\therefore m (AB) = m(AD) = m(CD) = 2 \times 50^{\circ} = 100^{\circ} [arc and opp. inscribed angles]
```

```
\therefore m(\angle ACB) = \frac{1}{2}m(AB) = 50^{\circ}
                                                                                  [inscribed angle and opp.arc]
\therefore m(BC) = 360^{\circ} - (100^{\circ} + 100^{\circ} + 100^{\circ}) = 60^{\circ}
[21]
In \Delta AMB
: AM = BM
                             [2 radii]
\therefore m(\angle MAB) = m(\angle MBA) = 25^{\circ}
m(\angle AMB) = 180 - (25^{\circ} + 25^{\circ}) = 130^{\circ}
: m(\angle ACB) = \frac{1}{2}m(\angle AMB)
                                                      inscribed angle and central angle subtended by AXB
\therefore m(\angle ACB) = \frac{1}{2} \times 130 = 65^{\circ}
: AXBC is a cyclic quad.
\therefore m (\angleAXB) + m (\angleACB) = 180°
                                                      [two opposite angles]
\therefore m (\angle ADC) = 180^{\circ} - 65^{\circ} = 115^{\circ}
: \mathsf{m}(AB) = \mathsf{m}(\angle \mathsf{AMB})
                                                      [opposite central angle]
\therefore m(AB) = 130^{\circ}
[22]
: m(\angle ADB) = \frac{1}{2}m(\angle AMB)
                                                      inscribed angle and central angle subtended by AB
\therefore m(\angle ACB) = \frac{1}{2} \times 120 = 60^{\circ}
\therefore \angle ADB is an exterior angle to \triangle ACD
\therefore m(\angle C) = m(\angle ADB) - m(\angle DAC)
m (\angle C) = 60^{\circ} - 20^{\circ} = 40^{\circ}
[23]
In \triangle ABC
: AB = AC
                                                            [two tangent – segments drawn from A]
∴ m(\angle ABC) = m(\angle ACB) = \frac{180^{\circ} - 40^{\circ}}{2} = 70^{\circ}
\therefore \overrightarrow{AC} is a tangent.
\therefore m(\angleACB) = m(\angleBEC) = 70°
                                                  [inscribed angle and angle of tangency subtended by BC]
∴ BCDE is a cyclic quad.
\therefore m (\angleCBE) + m (\angleCDE) = 180°
                                                   [two opposite angles]
\therefore m (\angleCBE) = 180^{\circ} - 110^{\circ} = 70^{\circ}
In \triangle CBE
\therefore m (\angleCBE) = m (\angleCEB) = 70°
\therefore CB = CE
                                                   [isos. triangle]
\therefore m (\angleACB) = m (\angleCBE) = 70°
                                                   [and they are in position of alt. angles]
\therefore \overline{BE} // \overline{AC}
[24]
In \triangle ABC
:: AB = AC
                                                            [two tangent – segments drawn from A]
\therefore m(\angle ABC) = m(\angle ACB) = \frac{180^{\circ} - 50^{\circ}}{2} = 65^{\circ}
\therefore \overrightarrow{AC} is a tangent.
m(\angle ACB) = m(\angle CYB) = 65^{\circ}
                                                  [inscribed angle and angle of tangency subtended by BC]
```

∴ BCXY is a cyclic quad.

 \therefore m (\angle CXY) + m (\angle CBY) = 180° [two opposite angles]

 \therefore m (\angle CBE) = 180° - 115° = 65°

 $m(\angle ABC) = m(\angle CBY) = 65^{\circ}$

 \vec{BC} bisects $\angle ABY$

In Δ CBY

 \therefore m (\angle CBY) = m (\angle CYB) = 65°

 \therefore CB = CY [isos.triangle]

[25]

 $: \overline{BC} // \overline{MD} \rightarrow (1)$

 \therefore m (\angle BCE) = m (\angle MDC) [corresponding. angles]

: ABCD is a cyclic quad.

 \therefore m (\angle BCY) = m (\angle DAB) = 60° [an exterior angle at opp. vertex]

central angle and inscribed angle subtended by BD $m(\angle BMD) = 2m(\angle DAB)$

 \therefore m(\angle ACB) = 2 × 60° = 120°

 $m(\angle BMD) + m(\angle MDC) = 120^{\circ} + 60^{\circ} = 180^{\circ}$ [and they are in position of interior supp. angles]

 \therefore m ($\angle ADC$) = 180° - 65° = 115°

 $\therefore \overline{MB} // \overline{DC} \rightarrow (2)$

From (1) and (2)

∴ BMDC is a parallelogram

: MD = MB [two radii]

∴ BMDC is a rhombus

 $\therefore m (\angle A) = m (\angle C) = 70^{\circ}$

 $: m(BCD) = m(\angle BMD) = 120^{\circ}$ [central angle and opp. arc]

:BC=CD[two adjacent sides of rhombus]

$$\therefore m(BC) = m(CD) = \frac{1}{2} \times 120^{\circ} = 60^{\circ}$$

$$\because m(BAD) = 360^{\circ} - 120^{\circ} = 240^{\circ}$$

 \therefore A is a mid point of BAD

$$\therefore m(BA) = m(AD) = \frac{1}{2} \times 240^{\circ} = 120^{\circ}$$

$$: m(AC) = m(BC) + m(BA) = 60^{\circ} + 120^{\circ} = 180^{\circ}$$

 \therefore \overline{AC} is a diameter of the circle

[26]

 $\therefore \overline{AB}$ is a diameter

$$\therefore m(ACB) = 180^{\circ} \quad [semi circle]$$

 $\therefore \overline{AB} // \overrightarrow{DE}$

$$\therefore m(AC) = m(BC) = \frac{1}{2} \times 180^{\circ} = 90^{\circ}$$

 \therefore X is a mid point of AC

$$\therefore m(AX) = m(CX) = \frac{1}{2} \times 90^{\circ} = 45^{\circ}$$

$$: m(BY) = 2m(CY)$$

```
\therefore m(CY) = 30^{\circ}
 : m(XY) = m(CX) + m(CY) = 45^{\circ} + 30^{\circ} = 75^{\circ} 
\because m(\angle XMY) = m\ \Big(XY\ \Big) = 75^{\circ}
                                                                             [Central angle and opposite arc]
\because m(\angle AMX) = \frac{1}{2} m \left(AX\right) = \frac{1}{2} \times 45^{\circ} = 22.5^{\circ}
                                                                     [inscribed angle and opposite arc]
\therefore \overline{AB} // \overrightarrow{DE}
                                                                       [alt. angles]
\therefore m (\angleCDM) = m (\angleAMD) = 22.5°
In A MDE
m(\angle DEM) = 180 - (75^{\circ} + 22.5^{\circ}) = 82.5^{\circ}
[27]
\therefore \overline{AB} is a diameter
\therefore m(\angleACB) = 90°
                                                   [inscribed angle drawn in a semi circle]
m (\angle AMX) = m (\angle ACB) = 90^{\circ}
                                                   [an exterior angle and interior angle at opp. vertex]
∴ BCXM is a cyclic quad.
\therefore m (\angleAXM) = m (\angleABC) \rightarrow (1)
                                                  [an exterior angle at opp. vertex]
: m(\angle ABC) = \frac{1}{2}m(\angle AMC) \rightarrow (2) inscribed angle and central angle subtended by AC
From (1) and (2)
\therefore m(\angle AXM) = \frac{1}{2}m(\angle AMC)
[28] In ABD
: AB = AD
                                                            [two tangent – segments drawn from A]
\therefore m(\angle ABD) = m(\angle ADB) = \frac{180^{\circ} - 50^{\circ}}{2} = 65^{\circ}
\therefore \overrightarrow{AB} is a tangent.
m(\angle ABD) = m(\angle BCD) = 65^{\circ}
                                                            [inscribed angle and angle of tangency subtended by BD]
In \Delta DBC
\therefore m (\angleDBC) = m (\angleDCB) = 65°
\therefore DB = DC \rightarrow (1)
                                                            [isos.triangle]
: \overline{MX} \perp \overline{BD}, \overline{MY} \perp \overline{CD} \rightarrow (2)
From (1) and (2)
\therefore MX = MY
[29] Const.: Draw AD
\therefore \overrightarrow{AC} is a tangent to the circle at A
\therefore \overline{CA} \perp \overline{AB}
\therefore m (\angleCAM) = 90°
: E is a midpoint of \overline{BD}
\therefore \overline{ME} \perp \overline{BD}
\therefore m (\angleMEC) = 90°
\therefore m (\angleCAM) + m (\angleMEC) = 90° + 90° = 180°
∴ ACEM is a cyclic quad.
: m (\angle ADB) = 90^{\circ}
                                                        [inscribed angle drawn in a semi circle]
\therefore m (\angleADB) = m (\angleMEB) = 90°
                                                        [and they are in position of corresponding angles]
\therefore \overline{ME} // \overline{AD}
```

```
[30]
: ABCD is a cyclic quad.
\therefore m (\angleA) + m(\angleC) = 180° \rightarrow (1) [two opposite angles]
: \overline{FE} // \overline{BC}
\therefore m (\angle EFC) + m(\angle C) = 180^{\circ} \rightarrow (2)
                                                                [interior supp. angles]
From (1) and (2)
                                  [and they are an exterior angle and interior angle at opp. vertex]
\therefore m (\angleA) = m (\angleEFC)
∴ AFED is a cyclic quad.
[31]
In \triangle ABX
: AB = AX
                                                            [isos.triangle]
\therefore m(\angle ABX) = m(\angle AXB) = 70°
∵ ABCD is a parallelogram
\therefore m (\angle B) + m (\angle D) = 70^{\circ}
                                                           [two opposite angles]
: m(\angle AXB) = m(\angle D) = 70^{\circ} [and they are an exterior angle and interior angle at opp. vertex]
∴ AXCD is a cyclic quad.
[32]
\because \overline{\text{MB}} is a radius, \overline{\text{AB}} is a tangent – segment to the circle at B
\therefore \overline{MB} \perp \overline{AB}
\therefore m(\angleABM) = 90°
similarly : m(\angle ADM) = 90^{\circ}
m(\angle ABM) + m(\angle ADM) = 90^{\circ} + 90^{\circ} = 180^{\circ}
∴ ABMD is a cyclic quad.
m(\angle BAD) + m(\angle BMD) = 180^{\circ}
                                                                [two opp. angles]
m(\angle BMD) = 180^{\circ} - 50^{\circ} = 130^{\circ}
∴ m(∠BCD) = \frac{1}{2}m(∠BMD) = \frac{1}{2} × 130° = 65° [inscribed angle and central angle subtended by BD]
\therefore \overline{AB} // \overline{DC}
m(\angle ABC) + m(\angle BCD) = 180^{\circ}
                                                                [interior supp. angles]
\therefore m (\angle ABC) = 180^{\circ} - 65^{\circ} = 115^{\circ}
[33]
In AABD
: AD = AB
\therefore m (\angleADB) = m (\angleABD) = 45°
\therefore m (\angle BAD) = 180^{\circ} - (45^{\circ} + 45^{\circ}) = 90^{\circ}
m(\angle BAD) + m(\angle BCD) = 90^{\circ} + 90^{\circ} = 180^{\circ}
∴ ABCD is a cyclic quad.
\therefore \overline{BD} is the diameter to the circle which passes through ABCD
m(\angle BCD) = 90^{\circ} \text{ and } m(\angle CBD) = 30^{\circ}
\therefore BD = 2CD = 2 × 5 = 10 cm.
\therefore \overline{AC} is a diameter and \overline{CY} is a tangent to the circle
\therefore \overrightarrow{CY} \perp \overline{AC}
\therefore m (\angleACY) = 90°
\therefore X is a midpoint of \overline{AB}
\therefore \overline{MX} \perp \overline{AB}
\therefore m (\angle AXY) = 90°
```

17

```
[and they drawn on the same base \overline{AY} and in the same side of it]
: m (\angle ACY) = m (\angle AXY) = 90^{\circ}
∴ AXCY is a cyclic quad.
\therefore m (\angleMYC) = m (\angleBAC) \rightarrow (1)
                                                   [drawn on the same base \overline{XC} and in the same side of it]
\therefore m (\angleBMC) = 2m (\angleBAC) \rightarrow (2) | Central and inscribed angles sub. by BC |
From (1) and (2)
\therefore m (\angleBMC) = 2m (\angleMYC)
[35]
\because \overline{AB} is a diameter and \overline{BD} is a tangent to the circle
\therefore \overrightarrow{BD} \perp \overline{AB}
\therefore m (\angleABD) = 90°
\therefore E is a midpoint of \overline{AC}
\therefore \overline{ME} \perp \overline{AC}
\therefore m (\angleMED) = 90°
m (\angle MBD) + m (\angle MED) = 90^{\circ} + 90^{\circ} = 180^{\circ}
                                                                       [and they are two opp. angles]
∴ MEDB is a cyclic quad.
\therefore m (\angleBMX) = m (\angleD) \rightarrow (1)
                                                                       [an exterior and interior angle at opp. vertex]
\therefore m (\angle BAX) = \frac{1}{2}m (\angle BMX) \rightarrow (2)
                                                                        Central and inscribed angles sub. by BX
From (1) and (2)
\therefore m (\angle BAX) = \frac{1}{2}m (\angle D)
∵ MEDB is a cyclic quad.
\therefore m (\angleAME) = m (\angleD) \rightarrow (3)
                                                                       [an exterior and interior angle at opp. vertex]
In AABC
\therefore E and M are two midpoints of \overline{AC} and \overline{AB}
\therefore \overline{ME} // \overline{BC}
\therefore m (\angleAME) = m (\angleABC) \rightarrow (4) [corres. angles]
From (3) and (4)
\therefore m (\angleABC) = m (\angleD)
\therefore \overrightarrow{AB} is a tangent to the circle passing through the points B, C and D
[36]
: ABCD is a cyclic quad.
∴ m(\angle BAC) = m(\angle BDC) (drawn on the same base \overline{BC})
                                                                                       \rightarrow (1)
\therefore \overrightarrow{AE} bisects \angle BAC
\therefore m(\angle EAF) = \frac{1}{2}m(\angle BAC)
∵ DF bisects ∠BDC
\therefore m(\angle EDF) = \frac{1}{2}m(\angle BDC) \longrightarrow (3)
From (1), (2) and (3)
\therefore m(\angle EAF) = m(\angle EDF)
                                        (and they are drawn on \overline{EF} and on on side of it)
∴ AEFD is a cyclic quad.
: ABCD is a cyclic quad.
m(\angle DAC) = m(\angle DBC) (drawn on the same base \overline{DC}) \rightarrow (4)
∴ AEFD is a cyclic quad.
m(\angle DAC) = m(\angle DEF) (drawn on the same base \overline{DF}) \rightarrow (5)
From (4) and (5)
```

18

```
m(\angle DEF) = m(\angle DBC) (and they are in position of coresponding angles)
\therefore \overline{EF} // \overline{BC}
[37]
: AECB is a cyclic quad.
m(\angle ECX) = m(\angle EAB) \rightarrow (1) [an exterior and interior angle at opp. vertex]
: m(\angle DAE) = m(\angle DCE) \rightarrow (2) two inscribed angles sub. by DE
∵ EA bisects ∠DAB
m(\angle DAE) = m(\angle EAB) \rightarrow (3)
From (1), (2) and (3)
m(\angle DCE) = m(\angle ECX)
\therefore \overrightarrow{CE} bisects \angle XCD
[38]
\therefore \overline{AB} is a diameter
\therefore m (\angleACB) = 90°
\therefore \overline{AB} is a diameter and \overline{BD} is a tangent to the circle
∴ BD | AB
\therefore m (\angleABD) = 90°
\therefore \overrightarrow{BD} is a tangent.
m(\angle BAD) = m(\angle DBC) [inscribed angle and angle of tangency subtended by BC]
In Δ ABC and ΔDBC
\therefore m (\angleACB) = m (\angleABD) = 90°
m(\angle BAD) = m(\angle DBC) (proved)
\therefore m (\angle ABC) = m (\angle BDC)
\therefore \overrightarrow{AB} is a tangent to the circle passing through the vertices of \triangle BCD
[39]
\therefore \overrightarrow{LX} is a tangent to the circle
\therefore m(\angleLXZ) = m(\angleXYZ) \rightarrow (1) inscribed angle and angle of tangency subtended by AB
: \overline{KD} // \overline{EC}
: m(\angle XDK) = m(\angle XYZ) \rightarrow (2) [two corresponding angles]
From (1) and (2)
: m(\angle LXZ) = m(\angle XDK)
\therefore XL is a tangent to the circle passing through the vertices of \triangleXDK
[40]
In ΔABE
: AE = EB = AB
m (\angle EAB) = m (\angle ABE) = m (\angle AEB) = 60^{\circ}
∴ ABCD is a cyclic quad.
\therefore m (\angleEAB) = m (\angleC) = 60°
                                            [an exterior and interior angle at opp. vertex]
\therefore m(\angleBDC) = \frac{1}{2}m(BC) = 30°
                                                                            [inscribed angle and opp. arc]
∴ In ∆BCD
m (\angle DBC) = 180^{\circ} - [60^{\circ} + 30^{\circ}] = 90^{\circ}
\therefore \overline{CD} is a diameter
[41]
\therefore \overline{AD}, \overline{AF} are two tangent – segment to the circle
```

19

```
\therefore AD = AF = 2 cm.
: \overline{BD}, \overline{BE} are two tangent – segment to the circle
\therefore BD = BE = 3 cm.
: E is a midpoint of \overline{BC}
\therefore BE = EC = 3 cm.
\because \overline{CE}, \overline{CF} are two tangent – segment to the circle
\therefore CE = CF = 3 cm.
: The per. of \triangle ABC = 2 + 3 + 3 + 3 + 3 + 2 = 16 cm.
[42]
In \Delta XDF
: XD = XF
                                                            [two tangent – segments drawn from X]
\therefore m(\angle XDF) = m(\angle XFD) = \frac{180^{\circ} - 80^{\circ}}{2} = 50^{\circ}
In Δ XYZ
: XY = XZ
\therefore m(\angle XYZ) = m(\angle XZY) = \frac{180^{\circ} - 80^{\circ}}{2} = 50^{\circ}
In \Delta ZFE
: ZF = ZE
                                                            [two tangent – segments drawn from X]
\therefore m(\angle ZFE) = m(\angle ZEF) = \frac{180^{\circ} - 50^{\circ}}{2} = 65^{\circ}
m(\angle XFZ) = 180^{\circ} [st. angle]
m(\angle DFE) = 180^{\circ} - (50^{\circ} + 65^{\circ}) = 65^{\circ}
[43]
Const.: Draw \overline{AB}
∴ ABZX is a cyclic quad.
\therefore m (\angleABZ) + m (\angleX) = 180° \rightarrow (1) [two opp. angles]
: ABLY is a cyclic quad.
\therefore m (\angleABZ) = m (\angleY) \rightarrow (2) [an exterior and interior angle at opp. vertex]
From (1) and (2)
\therefore m (\angle Y) + m (\angle X) = 180^{\circ}
                                             [and they are in position of interior supp. angles]
\therefore \overline{XZ}//\overline{LY}
[44]
\therefore \overline{EA}, \overline{EC} are two tangent – segment to the small circle
\therefore EA = EC \rightarrow (1)
: \overline{EB}, \overline{ED} are two tangent – segment to the big circle
\therefore EB = ED \rightarrow (2)
By subtracting (1) from (2)
\therefore AB = CD
[45]
\because \overline{DA}, \overline{DB} are two tangent – segment to circle M
\therefore DA = DB
\therefore m (\angleDBA) = m (\angleDAB) \rightarrow (1)
\because \overline{DA}, \overline{DC} are two tangent – segment to circle N
\therefore DA = DC
\therefore m (\angleDCA) = m (\angleDAC) \rightarrow (2)
By Adding (1) and (2)
```

With my best wishes for you

Mr. Michael Gamil

 \therefore m (\angle BAC) = 90°

20

 $\therefore m (\angle DBA) + m (\angle DBA) = m (\angle DAB) + m (\angle DAC)$

 \therefore m (\angle DBA) + m (\angle DBA) = m (\angle BAC)