Final Revision (1)

1 Complete each of the following:

- [1] The two equations : x = 4, y 3 = 0 represent two straight lines intersect at the point \cdots
- [2] The two equations : x = -1, y + 1 = 0 represent two straight lines intersect at the point lies on \cdots quadrant.
- [3] The S. S. of the two equations : x+1=0, y+2=0 in $\mathbb{R}\times\mathbb{R}$ is \cdots
- [4] The S. S. of the two equations : x + y = 0, y 5 = 0 in $\mathbb{R} \times \mathbb{R}$ is \cdots
- [5] The S. S. of the two equations : x + 3y = 4, 3y + x = 1 in $\mathbb{R} \times \mathbb{R}$ is \cdots
- [6] The S. S. of the two equations : 4x + y = 6, 8x + 2y = 12 in $\mathbb{R} \times \mathbb{R}$ is \cdots
- [7] If the two equations : x + 3y = 4, x + ay = 7 represents two parallel straight lines, then $a = \cdots$
- [8] If the two equations : x + 2y = 1, 2x + ky = 2 has one and only one solution , then $x \neq \cdots$
- [9] The equation : xy = 3 of \cdots degree
- [10] If x y = 3, $x^2 y^2 = 6$, then $x + y = \cdots$
- [11] The S. S. of the two equations : x=1 , $x^2+y^2=1$ in $\mathbb{R}\times\mathbb{R}$ is \cdots
- [12] The S. S. of the two equations : x=2, xy=6 in $\mathbb{R} \times \mathbb{R}$ is \cdots
- [13] If (2,3) is a solution of the equation : 2x ay = 3, then $a = \cdots$
- [14] If (2,3) is the common solution of the two equations: ax + by = 5, ax - by = 3 then $a = \cdots$ and $b = \cdots$

- [15] The degree of the equation : $2^3xy = 1$ is \cdots degree
- [16] If $x^2 y^2 = x + y$, such that $x + y \neq 0$, then $3x 3y = \cdots$
- [17] The set of zeroes of f where f(x) = zero is \cdots
- [18] The set of zeroes of f where f(x) = x 5 is ...
- [19] The set of zeroes of f where f(x) = 4 is ...
- [20] The set of zeroes of f where $f(x) = x^2 + 9$ is ...
- [21] The set of zeroes of f where $f(x) = 4x^2 9$ is ...
- [22] The set of zeroes of f where $f(x) = (x 5)^2$ is ...
- [23] The set of zeroes of f where f(x) = 5 x is ...
- [24] The domain of the function f where $f(x) = \frac{x+2}{x-1}$ is ...
- [25] The domain of the function f where $f(x) = \frac{x^2 x}{x^2 2x 3}$ is ...
- [26] The domain of the function f where $f(x) = \frac{x+2}{5x}$ is ...
- [27] The domain of the function f where $f(x) = \frac{x^2 + 2}{x^2 + 4}$ is ...
- [28] The common domain of the two functions $f_1: f_1(x) = \frac{x+1}{x}$
- $f_2: f_2(x) = \frac{x-3}{x^2-5x+6}$ is ...
- [29] The simplest form of the algebraic fraction : $\frac{x-3}{x^2-5x+6}$ is ...
- [30] If : $n_1(x) = \frac{5x}{5x^2 + 20}$, $n_2(x) = \frac{x}{x^2 + 4}$, then $n_1 = n_2$ in the domain ...
- [31] If: $n_1(x) = \frac{x+2}{x^2-4}$, $n_2(x) = \frac{x+5}{(x+5)(x-2)}$, then $n_1 = n_2$ in the domain ...

[32] If:
$$n(x) = \frac{x^2 - 9}{x - 2}$$
, then $z(n) = \cdots$

- [33] The set of zeroes of f where $f(x) = \frac{x-3}{x^2-4}$ is ...
- [34] The set of zeroes of f where $f(x) = x^2 25$ is ...
- [35] The function $f(x) = \frac{x-5}{x-2}$ does not exist at $x = \cdots$
- [36] If : $n(x) = \frac{1}{x+2} \frac{1}{x-2}$, then its simplest form is ... and its domain is ...
- [37] The domain of the additive inverse of $n(x) = \frac{2}{x-1}$ is ...
- [38] The two events are said to be mutually exclusive if $A \cap B = \cdots$
- [39] If the probability of that the event A occurs is 75%, then the probability of non occurrence of this event is \cdots
- [40] If A is an event, P(A) = 0, then A is ...
- [41] If \hat{A} is the complement event of A, then $A \cup \hat{A} = \cdots$ and $A \cap \hat{A} = \cdots$
- [42] The Probability of the sure event $= \cdots$
- [43] The Probability of the impossible event $= \cdots$
- [44] When a regular die tossed once , then the probability of getting an even number is \cdots
- [45] When a regular coin tossed once , then the probability of getting a head is \cdots
- [46] If A and B are two mutually exclusive events , P(A) = 0.2 and P(B) = 0.3 then $P(A \cup B) = \cdots$
- [47] If A and B are two mutually exclusive events , then $P(A \cap B) = \cdots$
- [48] If $A \subset S$ of a random experiment, $P(A) = P(A^{\setminus})$, then $P(A) = \cdots$
- [49] If A and B are two mutually exclusive events of a random experiment $P(A) = \frac{1}{4}$ and $P(A \cup B) = \frac{5}{12}$, then $P(B) = \cdots$

2 Choose the correct answer :

[1] The point of intersection of the two straight lines y = 2 and x + y = 6 is ...

- (a) (2,6)
- (b) (2,4)
- (c)(4,2)
- (d)(6,2)

The point of intersection of the two straight lines : 2x - y = 3[2] and 2x + y = 5 lies on the ... quadrant

- (a) 1st
- (b) 2*nd*
- (c) 3rd
- (d) 4th

The point of intersection of the two straight lines : x = 1 and [3] y = 5a lies on fourth quad., then a may be $= \cdots$

- (a) -5
- (b) zero
- (c) 1

(d) 5

The two straight lines : x + 5y = 1, x + 5y - 8 = 0 are ... [4]

- (a) parallel
- (b) coincide
- (c) intersect & non ⊥ (d) perpendicular

[5] The two straight lines : 3x + 4y = 1, 6x + 8y = 2 are ...

- (a) parallel
- (b) coincide
- (c) intersect & non ⊥ (d) perpendicular

The two straight lines : 3x = 7, 2y = 9 are ... [6]

- (a) parallel
- (b) coincide
- (c) intersect & non ⊥ (d) perpendicular

The two straight lines : x - 1 = 0, x + y = 5 are ... [7]

- (a) parallel
- (b) coincide
- (c) intersect & non ⊥ (d) perpendicular

[8] The number of solutions of the two equations : x + y = 2 and y-3=0 is ...

- (a)zero
- (b)one
- (c) two
- (d) three

The number of solutions of the two equations : x + y = 2 and [9] x + y - 3 = 0 is ...

- (a)zero
- (b)one
- (c) two
- (d) three

[10] If the two equations : x + 4y = 7 and 3x + ky = 21 has infinite number of solutions , then $k = \cdots$

- (a) 4
- (b) 7

- (c) 12
- (d) 21

[11] The curve of the function f such that $f(x) = x^2 - 3x + 2$ cuts x – axis at the two points \cdots

- (a) (2,0), (3,0) (b) (2,0), (1,0)

- (c) (-2,0), (-1,0) (d) (2,0), (-1,0)

[12] The S. S. of the equation : $2x^2 + 5x = 0$ in \mathbb{R} is ...

- (a) $\{0,5\}$
- (b) $\left\{0, -\frac{5}{2}\right\}$ (c) $\{2,5\}$
- (d) Ø

[13] The S. S. of the equation : $x^2 - 4x + 4 = 0$ in \mathbb{R} is ...

- (a) $\{-2,2\}$
- (b) $\{4,1\}$
- $(c) \{2\}$
- (d) Ø

[14] The S. S. of the equation : $x^2 + 5 = 0$ in \mathbb{R} is ...

- (a) $\{\sqrt{5}, -\sqrt{5}\}$ (b) $\{-\sqrt{5}\}$
- (c) $\{\sqrt{5}\}$
- (d) Ø

[15] If the equation : $ax^2 + bx + c = 0$ and $b^2 - 4ac > 0$, then the number of roots equals ...

- (a) 1
- (b) 2

(c) 0

(d) undetermined

[16] The degree of the equation : 3x + 4y + xy = 5 is ...

- (a) zero
- (b) first
- (c) second
- (d) third

[17] One solution of the equation : $x^2 - y^2 = 3$ in \mathbb{R} may be ...

- (a) (1, -2)
- (b) (-2,1)
- (c) (1,2)
- (d) (-1, -2)

[18] The ordered pair that satisfies both of the two equations: xy = 2, x - y = 1 is...

- (a) (1,2)
- (b) (2,1)
- (c)(1,1)
- (d) (2, -1)

[19] The S. S. of the two equations : x = y, xy = 1 in $\mathbb{R} \times \mathbb{R}$ is ...

- (a) {(1,1)}
- (b) $\{(-1, -1)\}$ (c) $\{(1, -1)\}$
- (d) $\{(1,1), (-1,-1)\}$

[20] The S. S. of the two equations : x - y = 0, xy

- $= 9 in \mathbb{R} \times \mathbb{R} is \cdots$
- (a) $\{(0,0)\}$
- (b) $\{(-3, -3)\}$ (c) $\{(3,3)\}$
- (d) $\{(3,3), (-3,-3)\}$

[21] One solution of the two equations : x - y = 2, $x^2 + y^2 = 20$ $in R may be = \cdots$

(a) (-4,2) (b) (2,-4)

(c) (3,1)

(d)(4,2)

[22] If: x = y + 1, $(x - y)^2 + y = 3$, then $y = \cdots$

(a) zero

(b) 1

(c) 2

(d) 3

[23] If x = 1, $x^2 + y^2 = 10$, then $y = \cdots$

(a) -3

(b) +3

(c)3

(d) 9

[24] If ab = 3, $ab^2 = 12$, then $b = \cdots$

(a) 4

(b) 2

(c) -2

(d) ± 2

If the difference between two numbers is 1 and the square of [25] their sum is 25, then the two numbers are ...

(a) 1,2

(b) 2.3

(c) 3.4

(d) 4.5

[26] If a regular die is tossed once, the probability of appearance a number less than $3 = \cdots$

(a) $\frac{1}{6}$

(b) $\frac{1}{3}$

(c) $\frac{1}{2}$

(d) $\frac{2}{3}$

If a bag contains 4 white balls, 6 red balls if one ball is drawn randomly, then the probability that this ball is red $= \cdots$

(a) $\frac{1}{5}$

(b) $\frac{2}{5}$

(c) $\frac{3}{5}$

(d) $\frac{2}{3}$

If the probability that a student in preparatory final exam is succeeded = 85%, then the probability that he fail is \cdots

(a) 0.015

(b) $\frac{1}{20}$

(c) $\frac{17}{20}$

(d) 0.85

If the probability that Egyptian team may win of football in the [29] African cup of nations 0.318, then the probability of non-winning $is = \cdots$

(a) 1

(b) zero

(c) 0.862

(d) 0.682

- If a bag contains a number of identical green and blue balls, if one [30] ball is drawn randomly, the number of green balls is 5 while the probability that the drawn ball is blue equals $\frac{2}{3}$, then the number of blue balls $= \cdots$
- (a) 10
- (b) 12
- (c) 15
- (d) 20
- [31] $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{3}$ and $P(A \cap B) = \frac{1}{8}$, then $P(A \cup B) = \cdots$
- (a) $\frac{5}{9}$
- (b) $\frac{17}{24}$ (c) $\frac{1}{6}$

- (d) $\frac{13}{24}$
- [32] P(A) = 0.2, P(B) = 0.6 and $P(A \cap B) = 0.3$, then $P(A \cup B) = 0.3$
- (a) 0.5
- (b) 0.62
- (c) 5

- (d) 0.13
- [33] If A and B are two mutually exclusive events, P(A) = 0.5 and $P(A \cup B) = 0.8$, then P(B) =
- (a) 0.03
- (b) 0.3
- (c) 0.5
- (d) 0.13
- A card is drawn randomly from 20 identical cards numbered from $1\ to\ 20\,$, then the probability that the number of drawn card multiple of 7 is ···
- (a) 10%
- (b) 15%
- (c) 20%
- (d) 25%
- [35] If A, B are two events in a random experiment and $A \subset B$, then $P(A - B) = \cdots$
- (a) zero
- (b) P(A) P(B) (c) P(B) P(A) (d) P(A)

Model answer

1 Complete each of the following:

[1]	(4,3)	[2]	The third	[3]	$\{(-1, -2)\}$
[4]	{(-5,5)}	[5]	Ø	[6]	$\{(x,y): 4x + y = 6, (x,y) \in R \times R\}$
			•		
[7]	3	[8]	4	[9]	The second
[10]	2	[11]	{(1,0)}	[12]	{(2,3)}
[13]	1/3	[14]	a=2 , $b=1$	[15]	2nd
		/3			
[16]	3	[17]	R	[18]	{5}
[19]	Ø	[20]	Ø	[21]	$\left\{-\frac{3}{2},\frac{3}{2}\right\}$
[22]	{5}	[23]	{5}	[24]	$R-\{1\}$
[25]	$R - \{3, -1\}$	[26]	$R - \{0\}$	[27]	R
[28]	$R - \{0,2,3\}$	[29]	$\frac{1}{x-2}$	[30]	R
[31]	$R - \{2, -2, -5\}$	[32]	$x-2$ {-3,3}	[33]	{3}
[34]	{5, -5}	[35]	2	[36]	$\frac{-4}{(x+2)(x-2)}$, $R - \{-2,2\}$
[37]	$R - \{1\}$	[38]	Ø	[39]	25%
[40]	impossible event	[41]	S,Ø	[42]	1
[43]	zero	[44]	S, \emptyset $\frac{1}{2}$	[45]	$\frac{1}{2}$
[46]	0.5	[47]	zero	[48]	$\frac{1}{2}$
[49]	$\frac{1}{6}$				

2 Choose the correct answer:

[1] (c)	[2] (a)	[3] (a)	[4] (a)	[5] (b)	[6] (d)
[7] (c)	[8] (b)	[9] (a)	[10] (c)	[11] (b)	[12] (b)
[13] (c)	[14] (d)	[15] (b)	[16] (c)	[17] (b)	[18] (b)
[19] (d)	[20] (d)	[21] (d)	[22] (c)	[23] (b)	[24] (a)
[25] (b)	[26] (b)	[27] (c)	[28] (b)	[29] (d)	[30] (a)
[31] (b)	[32] (a)	[33] (b)	[34] (a)	[35] (a)	

With all my best wishes for you Mr. Michael Gamil